Medical physics for particle therapy

Durante & Loeffler, Nature Rev Clin Oncol 2010

Potential advantages

High tumor dose, normal tissue sparing

Effective for radioresistant tumors

Effective against hypoxic tumor cells

Increased lethality in the target because cells in radioresistant (S) phase are sensitized

Fractionation spares normal tissue more than tumor

Reduced angiogenesis and metastatization

Treatment plans with protons: prostate

In silico trials Charged particles vs. SBRT

X-rays

Carbon

- Patients treated at Champalimaud Foundation, Lisbon (TrueBeam)
- 24 Gy single fx SBRT

In silico trial MSKCC/Champalimaud/ GSI

Christian Anderle, TU Darmstadt, Ph.D. thesis

AAPM poll, August 2012

What is the main obstacle to proton therapy replacing X-rays?

- Cost/benefit ratio
- Range uncertainties
- □ Protons will never replace X-rays

1. Range verification

Source of range uncertainty in the patient	Range uncertainty
Independent of dose calculation:	
Measurement uncertainty in water for commissioning	± 0.3 mm
Compensator design	± 0.2 mm
Beam reproducibility	± 0.2 mm
Patient setup	± 0.7 mm
Dose calculation:	
Biology (always positive)	+ 0.8 %
CT imaging and calibration	± 0.5 %
CT conversion to tissue (excluding I-values)	± 0.5 %
CT grid size	± 0.3 %
Mean excitation energies (I-values) in tissue	± 1.5 %
Range degradation; complex inhomogeneities	- 0.7 %
Range degradation; local lateral inhomogeneities *	± 2.5 %
Total (excluding *)	2.7% + 1.2 mm
Total	4.6% + 1.2 mm

Mouse Proton Tomography

800 MeV proton beam at LANL

Real time monitoring of the Bragg Peak position during a treatment with ¹²C beam

Rationale:

Real time, high accuracy (spatial resolution < 1 mm)

Moving targets: why is motion bad in particle therapy?

Even brilliant Einstein looses brilliance!

Motion mitigation techniques

Rescanning: N irradiations with 1/N dose

Gating

Tracking

Motion mitigation techniques

WE SHE

Rescanning: N irradiations with 1/N dose

Target motion • Gating: interrupted irradiation according to motion phase 7 mm Beam request gating window / residual **m**otion ON Tracking Beam pulse **OFF** ON **OFF** Beam extraction 110 115 120 125 130 13

Motion mitigation techniques

Rescanning: N irradiations with 1/N dose

• Gating: interrupted irradiation according to motion phase

• Tracking
lateral beam
position
x+dx(t)
y+dy(t)

• Tracking
range z+dz(t)
range z+dz(t)

Range uncertainties: tumor tracking in particle therapy

Treatment planning

4D CT

Motion detection

- X-ray stereo projections
- External surrogates combined with adaptive correlation models
- Soft-tissue imaging (ultrasound, MRI)
- Particle radiography

Motion tracking

- Lateral compensation (magnet steering)
- Depth compensation (moving degrader vs static degrader)

Treatment verification

- Off-line PET dosimetry
- In-beam PET dosimetry
- · Prompt radiation measurement

Riboldi et al., Lancet Oncol. 2012

External-internal correlation model

Seregni et al., Phys. Med. Biol. 2013

2. Cost/benefit ratio: new clinical indications

Established clinical indications

- Skull base and spine tumors
- Hepatocellular carcinoma
- Eye tumors
- Pediatric tumors

More research needed for

- Thoracic malignancies
- Head and Neck tumors
- Pelvic and abdominal sites

ASTRO Model Policy, May 2014

New diseases where charged particles may potentially lead to a breakthrough

- Pancreas
- Local recurrence of rectal cancer
- Breast
- Glioblastoma

Estimated Cancer Deaths in the US in 2013

Siegel et al., CA Cancer J Clin 2013

Noncancer diseases

Treatment plans with protons: breast

Lung cancer: 2nd in incidence and 1st in mortality for both sexes in US

Courtesy of M. Söhn, LMU

Graeff et al., Radiother. Oncol. 2013

Particle therapy for atrial fibrillation

Cardiac arrhythmias

Affects about 5% of the middle-aged population and is associated with high risk of stroke and infarct

Treatment

- Patients unresponsive to drugs undergo catheter ablation very invasive, limited success
- Pre-clinical SBRT (CyberHeart, CA)

Current trial with C-ions

- First experiment in July 2013 with a pig Langedorff at HIT (Heidelberg)
- Twenty swines irradiated at GSI in July 2014

Treatment plan, X-rays

Treatment plan, C-ions

Langendorff, July 2013

4. Other Ions: Helium and Oxygen

Penumbra comparison (90% => 10%):

Protons: 17,4 mm

Helium4: 10,9 mm

Carbon: 7,4 mm

HIT 13.12.2013

Rasterscan @ HIT-R+D-Cave

Courtesy of Thomas Haberer, HIT

Helium TP simulation Skull base chordoma, $\alpha/\beta=2$ Gy

Grün et al., GSI Rep. 2014

Helium: pre-clinical experimental studies

OER(pO₂, LET) model for adaptive particle treatment planning

Scifoni et al., Phys. Med. Biol. 2013

New ions: oxygen

•C, O, p and soon He available @HIT
•Joining OER driven and Multiion modality in next TRiP release

Krämer et al., J. Phys. Chem. Solids 2013

LET painting

Bassler et al., Acta Oncol. 2013

4 flat fields C-ions

4 ramped fields C-ions

4 ramped fields O-ions

Conclusions

- The future of particle therapy strongly depends on improvements in medical physics
- Reduction of range uncertainty is mandatory and strategies beyond fiducial markers and gating/rescanning should be found (tracking, online monitoring, proton radiography)
- Beam deliver technologies (including 4D/5D optimization) to broaden the diseases elected to be treated with particles is very important to reduce the cost/benefit ratio of the facility
- New ions can be use for pediatrics (⁴He) or very hypoxic tumors in single-fractions (¹⁶O) but require preliminary nuclear physics measurements (attenuation, fragmentation)
- BNL would be the ideal facility for this research, urgently needed in US in relation to the NCI P20 now ready to start

Biophysics Department

M. Durante (Director)

G. Kraft (Helmholtz Professor)

G. Taucher-Scholz (DNA damage)

S. Ritter (Stem cells)

C. Fournier (Late effects)

W. Kraft-Weyrather (Clinical radiobiology)

M. Scholz (Biophysical modelling)

M. Krämer (Treatment planning)

C. Bert (Moving targets)

C. La Tessa (Dosimetry)

http://www.gsi.de/biophysik/

